Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.795
1.
Sci Rep ; 14(1): 10758, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730020

Staphylococcus aureus is a frequent agent of bacteraemia. This bacterium has a variety of virulence traits that allow the establishment and maintenance of infection. This study explored the virulence profile of S. aureus strains causing paediatric bacteraemia (SAB) in Manhiça district, Mozambique. We analysed 336 S. aureus strains isolated from blood cultures of children younger than 5 years admitted to the Manhiça District Hospital between 2001 and 2019, previously characterized for antibiotic susceptibility and clonality. The strains virulence potential was evaluated by PCR detection of the Panton-Valentine leucocidin (PVL) encoding genes, lukS-PV/lukF-PV, assessment of the capacity for biofilm formation and pathogenicity assays in Galleria mellonella. The overall carriage of PVL-encoding genes was over 40%, although reaching ~ 70 to 100% in the last years (2014 to 2019), potentially linked to the emergence of CC152 lineage. Strong biofilm production was a frequent trait of CC152 strains. Representative CC152 and CC121 strains showed higher virulence potential in the G. mellonella model when compared to reference strains, with variations within and between CCs. Our results highlight the importance of monitoring the emergent CC152-MSSA-PVL+ and other lineages, as they display important virulence traits that may negatively impact the management of SAB paediatric patients in Manhiça district, Mozambique.


Bacteremia , Biofilms , Community-Acquired Infections , Staphylococcal Infections , Staphylococcus aureus , Humans , Mozambique/epidemiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Virulence/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Biofilms/growth & development , Child, Preschool , Bacteremia/microbiology , Bacteremia/epidemiology , Community-Acquired Infections/microbiology , Infant , Animals , Exotoxins/genetics , Bacterial Toxins/genetics , Leukocidins/genetics , Virulence Factors/genetics , Female , Male , Moths/microbiology
2.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710998

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Clostridium Infections , Clostridium perfringens , Enteritis , Genetic Variation , Mastitis, Bovine , Milk , Phylogeny , Animals , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/classification , Clostridium perfringens/pathogenicity , Cattle , Egypt , Female , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Milk/microbiology , Enteritis/microbiology , Enteritis/veterinary , Mastitis, Bovine/microbiology , Cattle Diseases/microbiology , Feces/microbiology , Type C Phospholipases/genetics , Dairying , Farms , Bacterial Toxins/genetics
3.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Article En | MEDLINE | ID: mdl-38698905

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Bacterial Toxins , SARS-CoV-2 , Synaptogyrins , Virus Internalization , Humans , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Synaptogyrins/metabolism , COVID-19/metabolism , COVID-19/virology , Jurkat Cells , Aggregatibacter actinomycetemcomitans/metabolism , Aggregatibacter actinomycetemcomitans/genetics , Angiotensin-Converting Enzyme 2/metabolism , Endocytosis , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Membrane Microdomains/metabolism
4.
ACS Nano ; 18(19): 12412-12426, 2024 May 14.
Article En | MEDLINE | ID: mdl-38693619

Glycans play vital roles in nearly all life processes of multicellular organisms, and understanding these activities is inseparable from elucidating the biological significance of glycans. However, glycan research has lagged behind that of DNA and protein due to the challenges posed by structural heterogeneity and isomerism (i.e., structures with equal molecular weights) the lack of high-efficiency structural analysis techniques. Nanopore technology has emerged as a sensitive single-molecule biosensor, shining a light on glycan analysis. However, a significant number of glycans are small and uncharged, making it challenging to elicit identifiable nanopore signals. Here we introduce a R-binaphthyl tag into glycans, which enhances the cation-π interaction between the derivatized glycan molecules and the nanopore interface, enabling the detection of neutral glycans with an aerolysin nanopore. This approach allows for the distinction of di-, tri-, and tetrasaccharides with monosaccharide resolution and has the potential for group discrimination, the monitoring of enzymatic transglycosylation reactions. Notably, the aerolysin mutant T240R achieves unambiguous identification of six disaccharide isomers, trisaccharide and tetrasaccharide linkage isomers. Molecular docking simulations reveal that multiple noncovalent interactions occur between residues R282, K238, and R240 and the glycans and R-binaphthyl tag, significantly slowing down their translocation across the nanopore. Importantly, we provide a demonstration of the kinetic translocation process of neutral glycan isomers, establishing a solid theoretical foundation for glycan nanopore analysis. The development of our technology could promote the analysis of glycan structural isomers and has the potential for nanopore-based glycan structural determination and sequencing.


Bacterial Toxins , Nanopores , Polysaccharides , Pore Forming Cytotoxic Proteins , Polysaccharides/chemistry , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Molecular Docking Simulation , Mutation
5.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740721

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Hydrogels , Microspheres , Pseudomonas aeruginosa , Staphylococcus aureus , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/prevention & control , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/administration & dosage , Cathelicidins , Microbial Sensitivity Tests/methods , Bacterial Toxins , Drug Liberation , Cell Movement/drug effects , Carbon/chemistry , Biofilms/drug effects
6.
Sci Total Environ ; 929: 172590, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38642746

Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.


Biodegradation, Environmental , Fungi , Microcystins , Wetlands , Microcystins/metabolism , Fungi/metabolism , Bacterial Toxins/metabolism , Alkaloids/metabolism , Cyanobacteria Toxins , Marine Toxins/metabolism , Water Pollutants, Chemical/metabolism , Waste Disposal, Fluid/methods , Uracil/analogs & derivatives , Uracil/metabolism
7.
Toxicon ; 242: 107707, 2024 May 06.
Article En | MEDLINE | ID: mdl-38579983

This research presents the synthesis and characterization of Cu-doped Fe3O4 (Cu-Fe3O4) nanoparticles as a magnetically recoverable and reusable detoxifying agent for the efficient and long-lasting neutralization of bacterial toxins. The nanoparticles were synthesized using the combustion synthesis method and characterized through SEM, XRD, BET, TGA, and VSM techniques. The detoxification potential of Cu-Fe3O4 was compared with traditional formaldehyde (FA) in detoxifying epsilon toxin (ETx) from Clostridium perfringens Type D, the causative agent of enterotoxemia in ruminants. In vivo residual toxicity tests revealed that Cu-Fe3O4 could detoxify ETx at a concentration of 2.0 mg mL-1 within 4 days at room temperature (RT) and 2 days at 37 °C, outperforming FA (12 and 6 days at RT and 37 °C, respectively). Characterization studies using dynamic light scattering (DLS) and circular dichroism (CD) highlighted lower conformational changes in Cu-Fe3O4-detoxified ETx compared to FA-detoxified ETx. Moreover, Cu-Fe3O4-detoxified ETx exhibited exceptional storage stability at 4 °C and RT for 6 months, maintaining an irreversible structure with no residual toxicity. The particles demonstrated remarkable reusability, with the ability to undergo five continuous detoxification batches. This study provides valuable insights into the development of an efficient and safe detoxifying agent, enabling the production of toxoids with a native-like structure. The magnetically recoverable and reusable nature of Cu-Fe3O4 nanoparticles offers practical advantages for easy recovery and reuse in detoxification reactions.


Bacterial Toxins , Copper , Formaldehyde , Formaldehyde/chemistry , Copper/chemistry , Animals , Bacterial Toxins/chemistry , Bacterial Toxins/toxicity , Clostridium perfringens , Magnetite Nanoparticles/chemistry
8.
Anal Chem ; 96(19): 7661-7668, 2024 May 14.
Article En | MEDLINE | ID: mdl-38687969

The development of sensitive, selective, and rapid methods to detect bacteria in complex media is essential to ensuring human health. Virulence factors, particularly pore-forming toxins (PFTs) secreted by pathogenic bacteria, play a crucial role in bacterial diseases and serve as indicators of disease severity. In this study, a nanochannel-based label-free electrochemical sensing platform was developed for the detection of specific pathogenic bacteria based on their secreted PFTs. In this design, wood substrate channels were functionalized with a Fe-based metal-organic framework (FeMOF) and then protected with a layer of phosphatidylcholine (PC)-based phospholipid membrane (PM) that serves as a peroxidase mimetic and a channel gatekeeper, respectively. Using Staphylococcus aureus (S. aureus) as the model bacteria, the PC-specific PFTs secreted by S. aureus perforate the PM layer. Now exposed to the FeMOF, uncharged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) molecules in the electrolyte undergo oxidation to cationic products (ABTS•+). The measured transmembrane ionic current indicates the presence of S. aureus and methicillin-resistant S. aureus (MRSA) with a low detection limit of 3 cfu mL-1. Besides excellent specificity, this sensing approach exhibits satisfactory performance for the detection of target bacteria in the complex media of food.


Electrochemical Techniques , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/metabolism , Metal-Organic Frameworks/chemistry , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Peroxidase/metabolism , Peroxidase/chemistry , Bacterial Toxins/metabolism , Bacterial Toxins/analysis , Biosensing Techniques
9.
Front Immunol ; 15: 1357072, 2024.
Article En | MEDLINE | ID: mdl-38638435

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Arginine , Bacterial Toxins , Calcium-Binding Proteins , Interleukin-6 , Type C Phospholipases , Animals , Male , Arginine/pharmacology , Bacterial Toxins/toxicity , bcl-2-Associated X Protein , Chickens/genetics , Inflammation , Mechanistic Target of Rapamycin Complex 1 , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Amino Acid Transport Systems/metabolism
10.
Front Immunol ; 15: 1373411, 2024.
Article En | MEDLINE | ID: mdl-38646535

Introduction: Veterinary vaccines against Clostridium perfringens type C need to be tested for absence of toxicity, as mandated by pharmacopoeias worldwide. This toxicity testing is required at multiple manufacturing steps and relies on outdated mouse tests that involve severe animal suffering. Clostridium perfringens type C produces several toxins of which the ß-toxin is the primary component responsible for causing disease. Here, we describe the successful development of a new cell-based in vitro assay that can address the specific toxicity of the ß-toxin. Methods: Development of the cell-based assay followed the principle of in vitro testing developed for Cl. septicum vaccines, which is based on Vero cells. We screened four cell lines and selected the THP-1 cell line, which was shown to be the most specific and sensitive for ß-toxin activity, in combination with a commercially available method to determine cell viability (MTS assay) as a readout. Results: The current animal test is estimated to detect 100 - 1000-fold dilutions of the Cl. perfringens type C non-inactivated antigen. When tested with an active Cl. perfringens type C antigen preparation, derived from a commercial vaccine manufacturing process, our THP-1 cell-based assay was able to detect toxin activity from undiluted to over 10000-fold dilution, showing a linear range between approximately 1000- and 10000-fold dilutions. Assay specificity for the ß-toxin was confirmed with neutralizing antibodies and lack of reaction to Cl. perfringens culture medium. In addition, assay parameters demonstrated good repeatability. Conclusions: Here, we have shown proof of concept for a THP-1 cell-based assay for toxicity testing of veterinary Cl. perfringens type C vaccines that is suitable for all vaccine production steps. This result represents a significant step towards the replacement of animal-based toxicity testing of this veterinary clostridial antigen. As a next step, assessment of the assay's sensitivity and repeatability and validation of the method will have to be performed in a commercial manufacturing context in order to formally implement the assay in vaccine quality control.


Bacterial Toxins , Clostridium perfringens , Animals , Clostridium perfringens/immunology , Bacterial Toxins/immunology , Bacterial Toxins/toxicity , Humans , Vero Cells , Chlorocebus aethiops , Toxicity Tests/methods , Clostridium Infections/veterinary , Clostridium Infections/immunology , Clostridium Infections/diagnosis , THP-1 Cells , Mice , Cell Survival/drug effects , Cell Line , Bacterial Vaccines/immunology , Animal Testing Alternatives/methods
11.
Ann Clin Microbiol Antimicrob ; 23(1): 35, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664689

PURPOSE: The clinical significance of negative toxin enzyme immunoassays (EIA) for Clostridioides difficile infections (CDIs) is unclear. Our study aimed to investigate the significance of toxin EIA-negative in the diagnosis and prognosis of CDI. METHODS: All stool specimens submitted for C. difficile toxin EIA testing were cultured to isolate C. difficile. In-house PCR for tcdA, tcdB, cdtA, and cdtB genes were performed using C. difficile isolates. Stool specimens were tested with C. difficile toxins A and B using EIA kit (RIDASCREEN Clostridium difficile toxin A/B, R-Biopharm AG, Darmstadt, Germany). Characteristics and subsequent CDI episodes of toxin EIA-negative and -positive patients were compared. RESULTS: Among 190 C. difficile PCR-positive patients, 83 (43.7%) were toxin EIA-negative. Multivariate analysis revealed independent associations toxin EIA-negative results and shorter hospital stays (OR = 0.98, 95% CI 0.96-0.99, p = 0.013) and less high-risk antibiotic exposure in the preceding month (OR = 0.38, 95% CI 0.16-0.94, p = 0.035). Toxin EIA-negative patients displayed a significantly lower white blood cell count rate (11.0 vs. 35.4%, p < 0.001). Among the 54 patients who were toxin EIA-negative and did not receive CDI treatment, three (5.6%) were diagnosed with CDI after 7-21 days without complication. CONCLUSION: Our study demonstrates that toxin EIA-negative patients had milder laboratory findings and no complications, despite not receiving treatment. Prolonged hospitalisation and exposure to high-risk antibiotics could potentially serve as markers for the development of toxin EIA-positive CDI.


Bacterial Proteins , Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Feces , Humans , Clostridioides difficile/genetics , Feces/microbiology , Male , Female , Bacterial Toxins/analysis , Clostridium Infections/diagnosis , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Aged , Middle Aged , Bacterial Proteins/genetics , Bacterial Proteins/analysis , Enterotoxins/analysis , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Immunoenzyme Techniques , Adult , Treatment Outcome , Polymerase Chain Reaction , Prognosis
12.
Toxins (Basel) ; 16(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38668620

The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.


Bacterial Proteins , Clostridium perfringens , Enterotoxins , Histidine Kinase , Spores, Bacterial , Clostridium perfringens/genetics , Clostridium perfringens/enzymology , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Enterotoxins/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Gene Expression Regulation, Bacterial , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Mice
13.
Nat Commun ; 15(1): 3537, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670939

Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.


Bacterial Proteins , Bacterial Toxins , Hemolysin Proteins , Hemolysis , Streptococcus pneumoniae , Streptolysins , Streptolysins/metabolism , Streptolysins/chemistry , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Streptococcus pneumoniae/drug effects , Bacterial Toxins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/antagonists & inhibitors , Hemolysis/drug effects , Hemolysin Proteins/metabolism , Hemolysin Proteins/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , A549 Cells , Cholesterol/metabolism , Cryoelectron Microscopy , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Virulence Factors/metabolism
14.
Toxins (Basel) ; 16(4)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38668605

Clostridium perfringens ε-toxin has long been associated with a severe enterotoxaemia of livestock animals, and more recently, was proposed to play a role in the etiology of multiple sclerosis in humans. The remarkable potency of the toxin has intrigued researchers for many decades, who suggested that this indicated an enzymatic mode of action. Recently, there have been major breakthroughs by finding that it is a pore-forming toxin which shows exquisite specificity for cells bearing the myelin and lymphocyte protein (MAL) receptor. This review details the molecular structures of the toxin, the evidence which identifies MAL as the receptor and the possible roles of other cell membrane components in toxin binding. The information on structure and mode of action has allowed the functions of individual amino acids to be investigated and has led to the creation of mutants with reduced toxicity that could serve as vaccines. In spite of this progress, there are still a number of key questions around the mode of action of the toxin which need to be further investigated.


Bacterial Toxins , Clostridium perfringens , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Clostridium perfringens/metabolism
15.
Genes (Basel) ; 15(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38674361

Bacillus anthracis is the bacterium responsible for causing the zoonotic disease called anthrax. The disease presents itself in different forms like gastrointestinal, inhalation, and cutaneous. Bacterial spores are tremendously adaptable, can persist for extended periods and occasionally endanger human health. The Anthrax Toxin Receptor-2 (ANTXR2) gene acts as membrane receptor and facilitates the entry of the anthrax toxin into host cells. Additionally, mutations in the ANTXR2 gene have been linked to various autoimmune diseases, including Hyaline Fibromatosis Syndrome (HFS), Ankylosing Spondylitis (AS), Juvenile Hyaline Fibromatosis (JHF), and Infantile Systemic Hyalinosis (ISH). This study delves into the genetic landscape of ANTXR2, aiming to comprehend its associations with diverse disorders, elucidate the impacts of its mutations, and pinpoint minimal non-pathogenic mutations capable of reducing the binding affinity of the ANTXR2 gene with the protective antigen. Recognizing the pivotal role of single-nucleotide polymorphisms (SNPs) in shaping genetic diversity, we conducted computational analyses to discern highly deleterious and tolerated non-synonymous SNPs (nsSNPs) in the ANTXR2 gene. The Mutpred2 server determined that the Arg465Trp alteration in the ANTXR2 gene leads to altered DNA binding (p = 0.22) with a probability of a deleterious mutation of 0.808; notably, among the identified deleterious SNPs, rs368288611 (Arg465Trp) stands out due to its significant impact on altering the DNA-binding ability of ANTXR2. We propose these SNPs as potential candidates for hypertension linked to the ANTXR2 gene, which is implicated in blood pressure regulation. Noteworthy among the tolerated substitutions is rs200536829 (Ala33Ser), recognized as less pathogenic; this highlights its potential as a valuable biomarker, potentially reducing side effects on the host while also reducing binding with the protective antigen protein. Investigating these SNPs holds the potential to correlate with several autoimmune disorders and mitigate the impact of anthrax disease in humans.


Anthrax , Antigens, Bacterial , Mutation , Polymorphism, Single Nucleotide , Receptors, Peptide , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Humans , Anthrax/microbiology , Anthrax/genetics , Anthrax/immunology , Receptors, Peptide/genetics , Bacterial Toxins/genetics , Bacillus anthracis/genetics , Bacillus anthracis/pathogenicity , Hyaline Fibromatosis Syndrome/genetics , Hyaline Fibromatosis Syndrome/microbiology , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/microbiology , Disease Resistance/genetics , Receptors, Cell Surface/genetics , Protein Binding
17.
Ecotoxicol Environ Saf ; 276: 116288, 2024 May.
Article En | MEDLINE | ID: mdl-38581909

Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100 µg/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10 µg/L of CYN led to maximum fold change of ∼6.5- fold at 16 h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.


Alkaloids , Bacterial Toxins , Cyanobacteria Toxins , Escherichia coli , Glutathione , Plasmids , Uracil , Plasmids/genetics , Glutathione/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Bacterial Toxins/toxicity , Uracil/analogs & derivatives , Uracil/toxicity , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Conjugation, Genetic , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics
18.
Biochem Biophys Res Commun ; 711: 149912, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38615572

An accessory gene regulator (agr) in the quorum sensing (QS) system in Staphylococcus aureus contributes to host infection, virulence factor production, and resistance to oxidative damage. Artificially maintaining the inactive state of agr QS impedes the host infection strategy of S. aureus and inhibits toxin production. The QS system performs intercellular signal transduction, which is activated by the mature autoinducer peptide (AIP). It is released from cells after AgrD peptide processing as an intercellular signal associated with increased bacterial cell density. This study evaluated the effectiveness of inhibiting agr QS wherein AIP trap carriers were made to coexist when culturing Staphylococcus aureus. Immersing a nitrocellulose (NC) membrane in Staphylococcus aureus ATCC 12600 culture inhibited QS-dependent α-hemolysin production, which significantly reduced the hemolysis ratio of sheep red blood cells by the culture supernatant. A quartz crystal microbalance analysis supported AIP adsorption onto the NC membrane. Adding the NC membrane during culture was found to maintain the expression levels of the agr QS gene agrA and α-hemolysin gene hla lower than that when it was not added. Eliminating extracellular AIP signals allowed agr QS to remain inactive and prevented QS-dependent α-hemolysin expression. Isolating intercellular signals secreted outside the cell is an effective strategy to suppress gene expression in bacterial cells that collaborate via intercellular signaling.


Bacterial Proteins , Hemolysin Proteins , Quorum Sensing , Staphylococcus aureus , Staphylococcus aureus/physiology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/genetics , Animals , Trans-Activators/metabolism , Trans-Activators/genetics , Hemolysis , Sheep , Gene Expression Regulation, Bacterial , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Signal Transduction , Erythrocytes/metabolism , Erythrocytes/drug effects , Peptides/pharmacology , Peptides/metabolism
20.
Can J Vet Res ; 88(2): 38-44, 2024 Apr.
Article En | MEDLINE | ID: mdl-38595949

Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.


Escherichia coli entérotoxinogènes (ETEC) est un type important de bactéries pathogènes qui cause de la diarrhée chez les porcs. L'objectif de l'étude était de préparer un nouveau vaccin tétravalent pour prévenir efficacement la diarrhée causée par E. coli chez les porcelets. Afin de réaliser la production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB, les caractéristiques biologiques, la stabilité, les conditions de conservation, et la sécurité de la souche recombinante (BL21(DE3)(pXKKSL4) ont été étudiées et l'efficacité du vaccin et la dose immunitaire minimum ont été mesurées. Les résultats indiquent que les caractéristiques biologiques, l'expression des protéines cibles, et l'immunogénicité de la 1ère à la 10e génération de la souche étaient stables. Ainsi, la génération germinale de base a été établie de manière préliminaire comme étant de la 1ère à la 10e générations. Les résultats des tests d'efficacité ont démontré que le taux de protection immunitaire pouvait atteindre 90 % avec une attaque au moyen de 1 dose léthale minimale (MLD) d'une souche virulente chez les souris. L'immunogénicité était stable et la dose immunitaire minimum était de 0,1 mL par souris. Nos travaux ont démontré que le vaccin génétiquement élaboré développé de cette façon pourrait prévenir la diarrhée chez les porcelets causée par des E. coli entérotoxigénique via les adhésines et les entérotoxines. Afin d'atteindre la production industrielle de ce vaccin aussitôt que possible, nous avons mené des tests immunologiques et de la recherche sur le processus de production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB. Les résultats de la présente étude fournissent des données scientifiques expérimentales pour la production commerciale de vaccins et jettent une base solide pour leur production industrielle.(Traduit par Docteur Serge Messier).


Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli Vaccines , Rodent Diseases , Swine Diseases , Animals , Swine , Mice , Enterotoxins , Vaccines, Combined , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/microbiology , Escherichia coli Proteins/genetics , Vaccines, Inactivated , Antibodies, Bacterial , Swine Diseases/microbiology
...